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Abstract

2 Surface-dressed optical Bloch equations are solved for a two-level atom near

or adsorbed on a rougn surface, which is modeled as a hemispheroid protrusion on

a perfectly-conducting surface. Effects of the laser bandwidth are included by

means of a phase-diffusion model. The presence of the surface roughness

generates a dephasing broadening mechanism on the adatomic resonance

fluorescence spectrum, which can be strongly enhanced by plasmon resonances

"2: depending on the shape of the hemispheroid. The dependence of the

electrodynamics of the adatom on the adatom-hemispheroid distance is also

evaluated.
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1. Introduction

There is considerable interest in the interaction of laser radiation with

adspecies on surfaces. I In particular, researchers have studied the problem of

surface-enhanced spontaneous emission of two-level atoms near a mirror 25and

decay of excited molecules near a small metal sphere. 6The enhancement of Raman

scattering and fluorescence by small metal spheres has also been examined.7,

However, when the resonant, driving coherent radiation is very strong, interesting

"reonacefluorescence" and other nonlinear phenomena can occur.9 "10  In these

cases, the resonant laser puts the atom or molecule in an environment where the

probability of stimulated emission can exceed that of spontaneous emission. Under

these circumstances we find back-transitions and Rabi oscillations of state

probability amplitudes, and the dynamic Stark splitting of resonances and

mutational oscillations of the emitted light intensity become important parts of

the laser-driving process.9 "10  In a strong resonant field, nonlinear scattering

occurs, and multiphoton processes become as important as single-photon processes,

so that we can no longer rely on the conventional low-order perturbation theory of

fluorescence. In the surface-free case, i.e., in the absence of a solid surface

or when the atom is very far from the surface, resonance excitation of a two-level

atom by a laser field has been extensively investigated, using the powerful

optical Bloch equations. 910Previously, we have derived a set of surface-dressed

optical Bloch equations 1-5by which we can discuss the effects of the surface-

reflected photons, the resonance interaction between the adatom and surface-

plasmons, the collision dephasing of the adatom produced by gas atoms in the

medium, and the random phase fluctuation of the (intense) laser field. In the

present paper, we extend the calculation of the resonance fluorescence for a flat-jufc 78t the case of an interface with metallic protrusions.

MV2..~
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Surface roughness can be characterized as a set of protrusions which randomly

(or regularly, in the case of a grating) stick out of the underlying planar

substrate. While the protrusions may have different sizes and shapes, in this

paper we model the protrusions as a prolate hemispheroid on top of a plane,1 6 "7

as depicted in Fig. 1. We note that the model of a half spheroid on a flat

16perfect conductor has been shown to be identical to a full spheroid in a

vacuum. lb Thus the following discussion can be also used for ellipsoidal cases.

The two-level adatom, which is located at a distance d from the top of the

hemispheroid, is driven by a laser. The adatom has no dipole moment in its ground

state, but it can have a transition dipole connecting the ground and excited

states. The emitted photons will be reflected by the flat mirror and the

hemispheroid, which in turn provide a resonance feedback to the dynamics of the

adatom. The spectrum of laser light scattering in the presence of a bump-plane

surface system near a two-level atom is then the subject of this paper.

Pli.
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2. Surface-Dressed Optical Bloch Equations for a Rough Surface

Let us evaluate the light scattering produced when a laser field is incident

on a molecule adsorbed on a rough surface. The surface will be taken to be a

prolate hemispheroid protruding from a flat plane. The spheroid is assumed to

have the complex dielectric constant E(w), while the plane is taken to be a

perfect conductor. The incident laser field is taken to be propagating along

the interface, where its electric field is taken to be along the normal of the

interface. The prolated spheroidal coordinate (E, n, *) system is used to

calculate the reflected field. We define

d = (a + d)/f

0= a/f

and

2 2)1/2
f (a -b)

where a and b are the semi-major and semi-minor axes of the hemispheroid

(Fig. 1). The reflected field at the position of the adatom (dipole), in the

16
limit of the near-field approximation, can be written as

Er f nCn Qn( 1 ) + 3 (1)
n 4(f I)

where Q denotes the Legendre function of the second kind and p is the induced

dipole moment which will be given later. The expansion coefficient C is given

by

(E 6O 1 4n - 12E +(I0 - )P_(o)()Pn(O)

Cn = ('- O)0  nQt(%O) + 2 n)p( O) Qn(n(O) , (2)

where P denotes the Legendre function of the first kind and E0 is the amplitude

of the incident laser. The induced dipole moment, p, of the adatom is given by

= Eota I
t ta

where a is the polarizability along the semi-major axis and Etotal is the total

toa
%~ % ~ .5 ~
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electric field applied to the adatom. The induced dipole moment can be

expressed by

' I (- n Q'(l) + + EO) (3)
n 4Mf03

After rearranging Eq.(3) and substituting back to Eq.(1), we obtain

,oE 0  (0 - C)&oQl,(& )

E ( 0 1 + r (4)r I-r QI( 0) -oQ1( 0 )

where

" Q'i a(2n + I )Pn'(O ) [Qn(CI )] 2Pn(O

3 ( - 1Qn) ) Pn(E0 )

As shown in Eq.(4), there are two resonance conditions: 1-r approaches zero

and e equals EoQI(CI)/Q 1(O). It can be shown easily that the near-field

approximation will break down when the factor 1-r approaches zero. The physical

interpretation of this factor is the image enhancement effect. The importance

of the image effect has been reviewed by Schatz.19  Let us focus on the second

resonance condition. We recall that

SI(E)= ln[- +] - I
1 2#.,

Hence, we can write the second resonance condition as

(E0/2) ln[( 0 + 1)/(& - 1)] - E21/( - 1)
E: - (%0/2) ln[(CO + I)/(0 - 1)] - 1

Using the identity
( 2 -1 -2n-) = Z -2

n
A7%.
0.; we obtain

i1
2 (6)

7" 7Q (%(% 1).... J

-A In the limit C w such that the spheroid tends towards a sphere, Eq.(6)

~~0
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becomes

2(o*)  = 2 0 -2 (7)

which reduces to the usual surface plasmon resonance condition of a sphere,

+ 2 = 0. We will discuss below how to use this reflected field to calculate

the transition dipole.

To treat problems of excitation and dissipation of a two-level adatom near a

hemispheroid, a self-consistent approach is developed in which the dynamical

behavior associated with the induced transition dipole is determined by surface

, dressed optical Bloch equations (SBE). 1 '1 2 Essentially, the SBE are quantum

operator equations for a12' a21 and W, where ij Ii> <Ji (i,j = 1,2) are the

adatomic transition operators and W(t) = 02 2(t) - oi (t) is the population

inversion of the adatom. By defining

S12 (t) = a12 (t) exp(iwLt) (8)

S2 1(t) = o21 (t) exp(-iwLt) (9)

where w"L is the laser frequency, we can write the rotating-wave approximation

(RWA) for the SBE of the adatom-bump system as

S2 1(t) -Y2 + iA 2(t) $21(t) 0

W(t) iQ (t) -YI -il (t) W(t) YI I

2 idStt

$12 (t) 0 2 -Y2 - iA $12(t) 0

(t)= S exp[T iO(t)] is the time-dependent Rabi frequency, where

. (2/A) IV 21I E0 (t) and E(t) is written as an expectation value in a coherent

state of the laser field in terms of the phase factor 9(t) as

E(t) = E0 (t) exp[-iw Lt + i4(t)] + c.c.; A - w21 - wL is the detuning; the

surface-induced phase-decay 2 2 + Ys' where Ys is determined by the
%%5
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reflected field which is emitted by the induced adatom and reflected by the

bump-plane interface. In the case of a rough surface, Ys is given by
11 12

= (2/fi)Im(F) ,(1

where

(1 - C) EQQ(I)

F= I-r Q(O) - El+ r ]

To include the effects of the laser bandwidth YLP the phase-diffusion model

for the laser field has been used by defining the following correlation function

for the Rabi frequency:
- 2

<< Q_(t I ) l+(t 2 ) >> = exp(-Y L It 2 - t 1 l) , (12)

where the double bracket signifies two averages: one is over the stochastic

ensemble and the other is a quantum mechanical average.

In the weak-field or large-detuning cases, where W(t) << W(t) >> -, the

population inversion of the two-level adatom has the following analytical form

(for t> 0):
2"Y2 + Y.L YI Y 2 - Y L

W(t) + Q 2 2 2 2 exp(-Y 1 t)y [(.Y2 + Y L) + A2 "Y I[(Y' - Y2 - Y L ) 2 + ,A2

~ 2 L
[6 2 + Y L)Y 1 - - L + A2 ] cos(At) + A(2Y2 - 2YL - YI sin(At)

[(2 + YL) 2 + A2][(Y - YL - Y L ) 2 + A]

,..4 ,, x exp[-(Y2  + YL)t] I . (13)

The corresponding power spectrum S(w) for the scattered light of the laser can

be calculated through the Fourier transform of the dipole-dipole correlation

function <<S 21(t 2)S 12(t ) >> :

Z,-'Z



S(W

2; s) 2 + L) 2+2Y 2 +A2
L8

Sw) 2 2  2 - 2

Cy Y22 2 +A2L ) + 2Y A(W - W Y2 "21L2 L L L 22 LL2
x 2 + 2 -2 , 2

- (L + (W W 2 2

2(Y + YL)
2 L i2+ -2 2 (14s)

1 Y2 + (W - W21 )]

The spectrum of light scattering in Eq.(14) exhibits two spectral peaks which

are strongly influenced by the resonance interaction between the adatom and the

bump-flat surface system in Eq.(6). One peak is centered at w w L' which

corresponds to elastic or Rayleigh scattering, and the other peak is near

w = w2j, corresponding to inelastic scattering or fluorescence.

In another limit, i.e., the case of a very strong drivi.ng field, nonlinear

scattering and multiphoton excitation processes can be as importan't as single-

photon processes. The scattering light spectrum S(w) of the adatom at steady

state can obtain by solving the SBE [Eq.(10)] to obtain the dipole-dipole

correlation function. The result is

2 A 2 +-
S(W) - -2 6(w- L )

A2 + asl2  + a2(

+ 2 [(2a- 1)A2 + a 2Q2  02
2 21

(A 2+ Q2)(A 2+ a) (W - W + S
L 0

1 (+ ' - A)[a(' - A) + A] S+/2 (A2 + Q2) (W - W + 0,)2 + S2

+

S /r
1 (Q' + A)[a(' + A) - A] ± 2 / (15)

(A2 + 2) (W - WL - Q')2 + S2

±
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where the parameter a is defined as

L= Y2/2Y . (16)

In Eq.(15), we have assumed zero laser bandwidth, IL= 0. The detuning

parameter is defined as

Q' = A + A (17)

where

A = A[I + (Q/A)2]1 2 
- i , (18)

and the widths of the profiles are

0 2 (2 2 (92 2 + AW:,.'.. O 
= 2( 2 + 2 ) ( 19)

2
S y 2 [(I + ). +2aA ] (20)S+_~ Q S+=S 2 + A2

Eq.(15) was derived under the assumption of a very strong coherent laser field,

i "%"' •, 2 A2 i2
i.e., Q + A2 >> 2 The strong-field spectrum, Eq.(15), has three spectral

peaks: the coherent and incoherent parts of the Rayleigh scattering centered at

W = WL and the two side bands centered at w = w ± Q' due to a multiphoton

process and fluorescece of the adatom, referred to as the three-photon

fluorescence components, respectively. 11 We shall see in the next section how

the resonance coupling between adatom and bump influences the strong-field

three-peak spectrum.

3. Numerical Results

Using Eqs.(13), (14) and (15), which describe the excitation and relaxation

behavior of a two-level atom near or adsorbed on a metal surface with roughness

(a bump on a flat surface), we have evaluated numerically some typical cases for

the rough surface-modified resonance fluorescence spectrum. In all the

calculations, the laser photon energy is taken to be 2.75 eV.
5.'

V.,.
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Figure 2 displays the rough surface-induced phase-decay constant Y as a5

function of the semi-minor axis b of the surface protrusion, with the semi-major

axis a for the surface protrusion fixed at 100 A. There is a sharp resonance

peak at b 38 A, corresponding to a resonant excitation of plasmons in the bump

which can strongly enhance adatom-bump interaction, through the reflected field

at the atomic site. Figures 3(a) and (b) display the influence of the plasmon

resonance in the bump on the adatomic population distribution. The time

oscillations of the population will decrease as the semi-minor axis b of the

spheroidal bump approaches the plasmon resonance b - 38 A [Fig. 3(b)],

indicating that the enhancement of the adatom-bump coupling leads to more

damping of the adatomic oscillator.
,

Figure 4 displays the resonance fluorescence spectrum in the weak-field

driving case [Eq.(14)], consisting of the Rayleigh and fluorescence peaks. The

former peak in our model is determined by the laser bandwidth Y The latter

peak (fluorescence) strongly depends on the adatom-bump distance and the

resonance coupling between the adatom and the bump. When the detuning A gets

smaller and the semi-minor axis b of the bump spheroid reaches the plasmon

resonance condition [see Fig. 4(b)], the two peaks will overlap, where the

fluorescence peak is strongly broadened by resonant adatom-bump coupling. In

this case, the height of the Rayleigh peak will depend on the atom-bump distance

and parameter b.

Figure 5 displays the typical three-peak spectrum of the strong-field-driven

adatom using the formula of Eq.(15). In Fig. 5(a) we can distinguish the

Rayleigh (central) peak, the three-photon peak (left) and the fluorescence peak

(right). In these pictures we have drawn just the profile of the incoherent

component of the Rayleigh scattering, as the coherent component will not be

broadened by the surface bump.
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In the smaller detuning case, i.e., Fig. 5(a), the spectrum has a

distinctive three-peak nature. In this case, the three-photon peak (left) has

measurable height, which is almost comparable with the fluorescence peak. It is

.V. seen that the smaller the adatom-bump distance, the larger the broadening

equally in the three spectral peaks, due to the enhancement of the adatom-bump

coupling for smaller distances. In the larger detuning case, i.e., Fig. 5(b),

the driving effect of the applied laser field is weaker due to the large

detuning A. The height of the three-photon peak is decreased and the three-peak

spectrum is transformed to the weak-field two-peak structure. In this case,

smaller adatom-surface distances still lead to larger broadening, as in the

former case.

4. Summary

A simple model has been developed to describe the influence of surface

roughness on the dynamic behavior of a two-level adatom near a metal surface.

Surface-dressed optical Bloch equations (SBE), which account for surface-

reflected photons and the resonance interaction due to plasmon excitation in the

metal protrusion, have been derived. Based on the SBE, the population

distribution of the adatom and the power spectrum of the scattered light, as

well as the surface-enhanced dephasing broadening of the atomic spectrum, have

• . - been evaluated. Collisions with foreign gas atoms and effects of the laser

bandwidth can also be considered in our model. It is shown that the spectrum of

scattered light, as well as the level population of the adatom, are strongly

enhanced by the resonantly excitation of plasmons in the hemispheroid on thea-i
*metal surface. The displayed surface enhancement for the adatom-bump system

I.. should be very useful in understanding the spectroscopy and chemistry associated

: ;.with rough surface.

jr
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Figure Captions

1. Geometry of the surface protusion. The semi-major axis is a and the semi-

minor axis is b. The prolate spheroidal coordinates are defined by a scale

2 2 1/2
. factor, f, given by f - (a2  b )

2. Rough surface induced phase-decay constant Ys as a function of the semi-

minor axis b of the surface protusion, where the semi-major axis is fixed

at 100 A. Ys is in the unit of Einstein's spontaneous decay constant A.

3. Time evolution of the population inversion in the weak-field or large-

detuning limit with (YL' L , A) = (0.3, 0.05, 5) in the unit of Einstein's

spontaneous decay constant A for b = 34 A [Fig. 3(a)] and b - 38 A

[Fig. 3(b)],w;h ti fixQ at 100 A. The horizontal axis corresponds to time

in the unit A . The quantity [w(t) + 1]/2 is shown along the vertical

axis. The curves numbered 1, 2, 3 and 4 correspond to the reduced atom-

bump distance d = 20, 25, 30 and 35, respectively (d - 2wd/A, where A is

the laser wavelength),

4. Resonance fluorescence power spectrum of scattered light with (YL' , a)

(0.3, 0.05, 5) in the unit A for b = 40 A [Fig. 4(a)] and b - 38 A

[Fig. 4(b)]. Curves 1, 2 and 3 correspond to the reduced atom-bump

distances d = 20, 25 and 30, respectively. X denotes (w - wL)/(w21 - wL)

on the horizontal axis. The units along the vertical axis are arbitrary.

5. Strong-field surface-modified resonance fluorescence spectrum, where just

the incoherent component of Rayleigh scattering is included, with

(A, Q, b) = (1, 10, 38) for Fig. 5(a) and (A, 9, b) - (10, 10, 38) for Fig.

'Irc and
5(b). A and 9 A the unit of Ab in the unit A. Curves 1, 2 and 3

correspond to the reduced atom-bump distances d - 20, 25 and 30,

respectively. X denotes (w - w L)/Q' on the horizontal axis. The units

along the vertical axis are arbitrary.

,.
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